Analysis of the Ecosystem Characteristics and Ecological Carrying Capacity of the Main Commercial Fish in the Artificial Reef Ecosystem in Laizhou Bay Using the Ecopath Model

Author:

Yuan Yang,Feng Jie,Xian Weiwei,Zhang HuiORCID

Abstract

In this study, we constructed an Ecopath model of the artificial reef ecosystem in Laizhou Bay, with special emphasis on the stock enhancement opportunities. Laizhou Bay is the largest semi-enclosed bay in the Bohai Sea, China, where multiple factors, especially overfishing, have led to the decline of many commercial marine fish stocks. Artificial oyster reefs were developed in 2011 in this region, providing shelter, feeding, and breeding sites for marine organisms. Additionally, stock enhancement by release can be used to replenish fishery species resources. Ad hoc stock enhancement, however, can fail to bring economic benefits and may impact ecosystem stability. Therefore, we estimated the ecological carrying capacity of the three main economic fish species in Laizhou Bay, including black rockfish (Sebastes schlegelii), fat greening (Hexagrammos otakii), and Chinese seabass (Lateolabrax maculatus) before release to ensure the sustainable use of fishery resources. The Ecopath model in Laizhou Bay was divided into 17 functional groups based on commercial relevance, dietary similarity, and habitat needs of the species present in the area. The ecological parameters, such as the ratio of total primary productivity to total respiration (1.205), connectance index (0.207), and system omnivory index (0.090) indicated that the artificial reef ecosystem in Laizhou Bay has a relatively simple food web structure. The ecological carrying capacities of S. schlegelii, H. otakii, and L. maculatus were assessed at 0.4676 t/km2, 0.5472 t/km2, and 0.3275 t/km2, respectively. This study provides a reference for the formulation of fishery strategies to maintain ecosystem stability and biodiversity and to maximize fishery returns and sustainability in Laizhou Bay.

Funder

National Key Research and Development Project of China

Youth Innovation Promotion Association Chinese Academy of Sciences

National Natural Science Foundation of china

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3