Developing an Extended Virtual Blade Model for Efficient Numerical Modeling of Wind and Tidal Farms

Author:

Radfar SoheilORCID,Kianoush Bijan,Majidi Nezhad Meysam,Neshat Mehdi

Abstract

Harnessing renewable and clean energy resources from winds and tides are promising technologies to alter the high level of consumption of traditional energy resources because of their great global potential. In this regard, developing farms with multiple energy converters is of great interest due to the skyrocketing demand for sustainable energy resources. However, the numerical simulation of these farms during the planning phase might pose challenges, the most significant of which is the computational cost. One of the most well-known approaches to resolve this concern is to use the virtual blade model (VBM). VBM is the implementation of the blade element model (BEM). This was done by coupling the blade element momentum theory equations to simulate rotor operation with the Reynolds averaged Navier–Stokes (RANS) equation to simulate rotor wake and the turbulent flow field around it. The exclusion of the actual geometry of blades enables a lower computational cost. Additionally, due to simplifications in the meshing procedure, VBM is easier to set up than the models that consider the actual geometry of blades. One of the main unaddressed limitations of the VBM code is the constraint of modeling up to 10 renewable energy converters within one computational domain. This paper provides a detailed and well-documented general methodology to develop a virtual blade model for the simulation of 10-plus converters within one computational domain to remove the limitation of this widely used and robust code. The extended code is validated for both the single- and multi-converter scenarios. It is strongly believed that the technical contribution of this paper, combined with the current advancement of available computational resources and hardware, can open the gates to simulate farms with any desired number of wind or tidal energy converters, and, accordingly, secure the sustainability and feasibility of clean energies.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Ability of Convergent–Divergent Diffusers for Wind Turbines to Exploit Yawed Flows on Moderate-to-High-Slope Hills;Energies;2024-02-20

2. Low-order CFD simulation of a ducted wind turbine in realistic hilly environments;2024 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA);2024-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3