Cross-Domain Knowledge Transfer for Sustainable Heterogeneous Industrial Internet-of-Things Networks

Author:

Gong Zhenzhen1ORCID,Cui Qimei1,Ni Wei2

Affiliation:

1. National Engineering Laboratory for Mobile Network Technologies, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. Data61, Commonwealth Science and Industrial Research Organization (CSIRO), Marsfield, NSW 2122, Australia

Abstract

In this article, a novel cross-domain knowledge transfer method is implemented to optimize the tradeoff between energy consumption and information freshness for all pieces of equipment powered by heterogeneous energy sources within smart factory. Three distinct groups of use cases are considered, each utilizing a different energy source: grid power, green energy source, and mixed energy sources. Differing from mainstream algorithms that require consistency among groups, the proposed method enables knowledge transfer even across varying state and/or action spaces. With the advantage of multiple layers of knowledge extraction, a lightweight knowledge transfer is achieved without the need for neural networks. This facilitates broader applications in self-sustainable wireless networks. Simulation results reveal a notable improvement in the ’warm start’ policy for each equipment, manifesting as a 51.32% increase in initial reward compared to a random policy approach.

Funder

Regional Innovation and Development of the National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3