Bayesian Update with Importance Sampling: Required Sample Size

Author:

Sanz-Alonso DanielORCID,Wang Zijian

Abstract

Importance sampling is used to approximate Bayes’ rule in many computational approaches to Bayesian inverse problems, data assimilation and machine learning. This paper reviews and further investigates the required sample size for importance sampling in terms of the χ2-divergence between target and proposal. We illustrate through examples the roles that dimension, noise-level and other model parameters play in approximating the Bayesian update with importance sampling. Our examples also facilitate a new direct comparison of standard and optimal proposals for particle filtering.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference35 articles.

1. Importance Sampling: Intrinsic Dimension and Computational Cost

2. Inverse Problems and Data assimilation;Sanz-Alonso;arXiv,2018

3. Bayesian Reasoning and Machine Learning;Barber,2012

4. On the consistency of graph-based Bayesian semi-supervised learning and the scalability of sampling algorithms;Garcia Trillos;J. Mach. Learn. Res.,2020

5. The Bayesian Update: Variational Formulations and Gradient Flows

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Global convergence of optimized adaptive importance samplers;Foundations of Data Science;2024

2. Non-asymptotic analysis of ensemble Kalman updates: effective dimension and localization;Information and Inference: A Journal of the IMA;2023-12-28

3. Adaptive chaotic sampling particle filter to handle occlusion and fast motion in visual object tracking;Digital Signal Processing;2023-04

4. Autodifferentiable Ensemble Kalman Filters;SIAM Journal on Mathematics of Data Science;2022-06

5. A principled stopping rule for importance sampling;Electronic Journal of Statistics;2022-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3