PM10 Organic Aerosol Fingerprints by Using Liquid Chromatography Orbitrap Mass Spectrometry: Urban vs. Suburban in an Eastern Mediterranean Medium-Sized Coastal City

Author:

Stergiou Evangelos12ORCID,Chatziioannou Anastasia Chrysovalantou13ORCID,Pergantis Spiros A.1ORCID,Kanakidou Maria124ORCID

Affiliation:

1. Environmental Chemical Processes Laboratory (ECPL), Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Greece

2. Center of Studies on Air quality and Climate Change (C-STACC), Institute of Chemical Engineering (ICE-HT), Foundation for Research and Technology (FORTH), 26504 Patras, Greece

3. Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC/WHO), 69366 Lyon, France

4. Laboratory for Modeling and Observation of the Earth System (LAMOS), Institute of Environmental Physics, University of Bremen, 28359 Bremen, Germany

Abstract

This study compares the PM10 (particulate matter of diameter smaller than 10 μm) organic aerosol composition between urban and suburban stations in Heraklion, Crete, during winter 2024 in order to highlight the impact of local anthropogenic activities on urban atmospheric particulate matter pollution. Using an HPLC-ESI-MS Orbitrap analyzer (High Performance Liquid Chromatography-Electrospray Ionization-Mass Spectrometry) in full MS scan mode at a resolution of 140,000, 48 daily aerosol filter extracts were analyzed in both positive and negative modes, resulting in the detection of 2809 and 3823 features, respectively. Features with at least five times higher intensity in the urban environment compared to the suburban, and p < 0.05, were deemed significant. A correlation with black carbon (r > 0.6) was observed for 71% of significant urban features in positive mode. These features showed a predominance of low O:C ratios (<0.2) and the majority were classified as intermediate volatility organic compounds (IVOCs), indicating fresh primary emissions. A clear urban–suburban distinction was shown by PCA of positive mode features, unlike the negative mode features. Regarding the total intensity of the features, urban samples were on average 55% higher than suburban samples in positive mode and 39% higher in negative mode. This study reveals the molecular profile of locally emitted combustion related organics observed in positive mode in an urban environment.

Funder

European Union’s Horizon 2020

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3