Abstract
γ-valerolactone can be a game-changer in the chemical industry because it could substitute fossil feedstocks in different fields. Its production is from the hydrogenation of levulinic acid or alkyl levulinates and can present some risk of thermal runaway. To the best of our knowledge, no studies evaluate the thermal stability of this production in a continuous reactor. We simulated the thermal behavior of the hydrogenation of butyl levulinate over Ru/C in a continuous stirred-tank reactor and performed a sensitivity analysis. The kinetic and thermodynamic constants from Wang et al.’s articles were used. We found that the risk of thermal stability is low for this chemical system.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献