Study on Gas Migration Mechanism and Multi-Borehole Spacing Optimization in Coal under Negative Pressure Extraction

Author:

Du Feng,Cui Weilong,Wang Kai

Abstract

In order to study the gas migration in gas-bearing coal, and reasonably arrange gas drainage boreholes to improve the efficiency of gas drainage, a gas-solid coupling model is established based on the pore-fracture dual medium porous model. The solid deformation of coal body, gas seepage and diffusion, and gas adsorption and desorption are considered in this model. The COMSOL software is used to simulate the gas change in the coal matrix and coal fracture under single borehole extraction. We analyze the effective extraction range and study the migration mechanism of gas between coal fracture and borehole, coal matrix and coal fracture, and coal matrix. The effective extraction area of multi-borehole negative pressure gas extraction varies with extraction time and borehole spacing. At 140 d, the effective extraction radius is r = 1.3 m, and the spacing of boreholes is 233 r=1.5 m, 2 r=2.6 m,4 m,5 m,and 6 m, respectively. The influence of the equilateral triangle shape of three boreholes on the gas extraction effect is studied. The simulation results show that when three boreholes are extracted for 140 days under different borehole spacing, different gas extraction effects will be affected by a superposition effect. Considering the change in gas pressure, the effect of gas extraction in the effective extraction area, and the safety and cost performance of gas extraction, it is concluded that the optimal hole spacing is 5 m around 140 d. This study aims to provide reference for underground gas drilling layout and reasonable hole spacing.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3