Abstract
The operation of reforming catalysts in a fixed bed reactor undergoes a high level of interaction between the operating parameters and the reaction mechanism. Understanding such an interaction reduces the catalyst deactivation rate. In the present work, three kinds of nanocatalysts (i.e., Pt/HY, Pt-Zn/HY, and Pt-Rh/HY) were synthesized. The catalysts’ performances were evaluated for n-heptane reactions in the fixed bed reactor. The operating conditions applied were the following: 1 bar pressure, WHSV of 4, hydrogen/n-heptane ratio of 4, and the reaction temperatures of 425, 450, 475, 500, and 525 °C. The optimal reaction temperature for all three types of nanocatalysts to produce high-quality isomers and aromatic hydrocarbons was 500 °C. Accordingly, the nanocatalyst Pt-Zn/HY provided the highest catalytic selectivity for the desired hydrocarbons. Moreover, the Pt-Zn/HY-nanocatalyst showed more resistance against catalyst deactivation in comparison with the other two types of nanocatalysts (Pt/HY and Pt-Rh/HY). This work offers more understanding for the application of nanocatalysts in the reforming process in petroleum refineries with high performance and economic feasibility.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献