Application of the Heat Penetration Distance in the Design of the Hole Spacing of Ground-Coupled Heat Pumps

Author:

Wei TingORCID,Tao Yuezan,Zhang Yameng,Ren Honglei,Lin FeiORCID

Abstract

Due to issues such as heat accumulation, the site area, and project investment, the reasonable determination of the hole spacing for heat exchangers has become one of the key design points of the ground-coupled heat pump system. Based on the definition of heat penetration in heat transfer and the research method of the inverse problem, a direct algorithm of the heat penetration distance in the aquifer was proposed using the analytical solution to the mathematical model for one-dimensional heat convection–conduction problems. Taking a vertical ground-coupled heat pump project in Hefei, Anhui Province, China, as an example, a three-dimensional hydro-thermal coupling numerical simulation model was established, and the influence radius during the refrigeration and heating periods under the action of a single borehole heat exchanger was determined. Comparing the heat penetration distance with the influence radius, the results show that the relative errors of the results obtained by the two methods are less than 10%, which verifies the rationality and effectiveness of the calculated penetration distance in the aquifer. At the end of the cooling or heating period, the heat penetration distance in the aquifer is calculated to be 7.59 m. Therefore, the proposed method is straightforward and efficient, which can provide a convenient approach to determining the reasonable hole spacing of the heat pump system.

Funder

the Open Research Fund Program of the State Key Laboratory of Hydroscience and Engineering, Tsinghua University

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3