Hydrothermally-Derived Silver-Decorated Nanocrystalline Anatase Photocatalyst for Reactive Violet 2 Photodegradation

Author:

Kurajica StanislavORCID,Grčić Ivana,Minga Iva,Mandić VilkoORCID,Mužina Katarina

Abstract

A photocatalyst comprised of Ag nanoparticles dispersed on an anatase matrix has been prepared using a simple hydrothermal method without additional thermal treatment. The prepared material was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), UV-Vis spectroscopy, and N2 adsorption–desorption isotherms. The prepared catalyst activity was evaluated by photocatalytic degradation of C.I. Reactive Violet 2 (RV2) aqueous solution under UVA and visible light illumination. SEM revealed the non-uniform dispersion of silver particles throughout the matrix composed of fine particles. According to XRD analysis, the matrix was composed of pure anatase with a crystallite size of 8 nm calculated through the Scherrer equation. HRTEM micrograph analysis showed that anatase nanoparticles possess a spherical morphology and a narrow size distribution with an average particle size of 8 nm with more active anatase {100} crystal surface exposed, while silver nanoparticles were between 60 and 90 nm. A bandgap of 3.26 eV has been calculated on the basis of the DRS UV-Vis spectrum, while a specific surface area of 209 m2g−1 has been established from adsorption isotherms. Thus, through a simple synthesis approach without subsequent thermal treatment, the agglomeration of nanoparticles and the reduction of specific surface area have been avoided. Prepared nano Ag/anatase photocatalyst exhibits excellent efficiency for the photodegradation of RV2 under UVA and visible irradiation.

Funder

University of Zagreb

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3