Thermodynamic and Economic Evaluation of a Novel Green Methanol Poly-Generation System

Author:

Ye Qiliang,Bao Yipeng,Pan HuiORCID,Liu Yulan,Yuan Peiqing

Abstract

Methanol is considered a sustainable alternative energy source due to its ease of storage and high-octane rating. However, the conventional methanol production process is accompanied by resource consumption and significant greenhouse gas emissions. The electrochemical reaction of electrochemically reacted hydrogen (H2) with captured carbon dioxide (CO2) offers an alternative route to methanol production. This paper presents a new green poly-generation system consisting of a parabolic trough solar collector (PTC) unit, an organic Rankine cycle (ORC) unit, a CO2 capture unit, an alkaline electrolysis unit, a green methanol synthesis and distillation unit, and a double-effect lithium bromide absorption refrigeration (ARC) unit. The system mainly produced 147.4 kmol/h of methanol at 99.9% purity, 283,500 kmol/h of domestic hot water, and a cooling load of 1341 kW. A total 361.34 MW of thermal energy was supplied to the ORC by the PTC. The alkaline electrolysis unit generated 464.2 kmol/h of H2 and 230.6 kmol/h of oxygen (O2) while providing H2 for methanol synthesis. Thermodynamic and economic analysis of the system was carried out. The energy and exergy efficiency of the whole system could reach 76% and 22.8%, respectively. The internal rate of return (IRR) for the system without subsidies was 11.394%. The analysis for the methanol price showed that the system was economically viable when the methanol price exceedsed$363.34/ton. This new proposed poly-generation system offers more options for efficiently green methanol production.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference42 articles.

1. Bakhtyari, A., Mofarahi, M., and Lee, C.-H. (2020). Advances in Carbon Capture, Woodhead Publishing.

2. Carbon neutrality: Toward a sustainable future;Chen;Innovation,2021

3. (2022, July 10). IPCC Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change. Available online: https://www.ipcc.ch/sr15/.

4. Green methanol from hydrogen and carbon dioxide using geothermal energy and/or hydropower in Iceland or excess renewable electricity in Germany;Kauw;Energy,2015

5. Lacerda de Oliveira Campos, B., John, K., Beeskow, P., Herrera Delgado, K., Pitter, S., Dahmen, N., and Sauer, J. (2022). A Detailed Process and Techno-Economic Analysis of Methanol Synthesis from H2 and CO2 with Intermediate Condensation Steps. Processes, 10.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3