Microseismic Monitoring of the Fracture Nucleation Mechanism and Early Warning for Cavern Rock Masses

Author:

Zhao Jin-Shuai12,Zhao Yue-Mao1,Li Peng-Xiang3,Chen Chong-Feng4,Zhang Jian-Cong5,Chen Jiang-Hao2

Affiliation:

1. College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao 266590, China

2. Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China

3. College of Urban Construction, Heze University, Heze 274015, China

4. Xi’an Research Institute, China Coal Technology and Engineering Group Corporation, Xi’an 710077, China

5. PowerChina Huadong Engineering Corporation Limited, Hangzhou 311122, China

Abstract

The rock mass is susceptible to instability and damage during cavern construction. The blast-induced cracking process of the rock mass contains a wealth of information about the precursors of instability, and the identification of fracture nucleation signals is a prerequisite for effective hazard warning. A laboratory mechanical test and microseismic (MS) monitoring were carried out in the Baihetan Cavern to investigate the fracture nucleation process in the rock mass. MS monitoring shows that pre-existing microcracks were closed or new cracks were generated under the action of high stress, which caused the migration of microcracks. As the crack density increases, the fracture interaction gradually increases. The study of the rock fracture nucleation mechanism helps to reveal the MS sequences during the rock fracture process, and the fore-main shock was found in the MS sequence during access tunnel excavation. This study can effectively provide guidance for the early warning of rock mass failure and the stability analysis of underground caverns under blasting excavation disturbance.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3