Selection and Optimization Design of PDC Bits Based on FEM Analysis for Drilling Long Horizontal Sections of Shale Formations

Author:

Kong Lulin1,Wang Zhaowei2,Wang Haige3,Cui Mingyue1,Liang Chong1,Kong Xiangwen1ORCID,Wang Ping1

Affiliation:

1. Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China

2. Petroleum Engineering School, Southwest Petroleum University, Chengdu 610500, China

3. CNPC Engineering Technology R&D Company Limited, Beijing 100083, China

Abstract

Well structures with ultra-long sections have become one of the most applied technologies in the field of shale gas development. While there have been many technical challenges, enhancing the breaking efficiency and stability of polycrystalline diamond compact (PDC) bits has become an essential issue of focus. Since 2013, the well structure in the Duvernay area has been optimized multiple times, and the rate of penetration (ROP) of the entire wellbore has nearly doubled. However, there are significant differences in terms of the performances of different PDC bits, and there is still room for improvement to optimize these drill bits. For this reason, a confined compressive strength test was conducted to obtain the rock mechanical parameters from shale cores extracted from the long horizontal section. Using these data, a finite element model (FEM) was developed with a corresponding scale. A calibration of the elastic-plastic damage constitutive models was then performed using the FEM. The breaking mechanism of three different PDC bits was examined using a “PDC bit-bottom hole” interaction FEM model, facilitating guidance for bit selection and design optimization: (1) The type B PDC bit, which has four blades and 20 cutters, exhibited the highest mechanical specific energy (MSE) and the lowest vibration across three directional mechanical characteristics. This design is recommended for engineering applications. (2) Lower axial vibrations were produced when the CDE was used as the rear element when compared to those when using the BHE. However, an increase within an acceptable range was observed in the TOB and circumferential vibrations. Thus, for redesigning work on the type B bit, the assembly of the CDE is suggested. (3) A decrease in the MSE and vibration in three directional mechanical characteristics was observed when the depth of cut (DOC) was varied between 1.5 and 2.0 mm. A broadening in the range of lateral forces was noted when a DOC of 2.0 mm was used. Therefore, for the redesign of the type B bit, the assembly of CDEs as rear elements at a DOC of 1.5 mm is recommended. In conclusion, a new practical method for the selection and optimization of PDC bit design, based on rock mechanics and the FEM theory, is proposed.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3