Measurement and Forecasting of High-Speed Rail Track Slab Deformation under Uncertain SHM Data Using Variational Heteroscedastic Gaussian Process

Author:

Wang Qi-AngORCID,Ni Yi-QingORCID

Abstract

Uncertainty in sensor data complicates the construction of baseline models for the measurement and forecasting (M&F) of high-speed rail (HSR) track slab deformation. Standard Gaussian process (GP) assumes a uniform noise throughout the input space. However, in the application to modelling of HSR structural health monitoring (SHM) data, this assumption can be unrealistic, because of its unique heteroscedastic uncertainty that is induced by dynamic train loading, electromagnetic interference, large temperature variation, and daily maintenance actions of railway track infrastructure. Therefore, this study firstly develops a novel online SHM system enabled by fiber Bragg grating (FBG) technology to eliminate electromagnetic interference on SHM data for continuous and long-term monitoring of track slab deformation, with the capacity of temperature self-compensation. To deal with different sources of uncertainty, the study explores Variational Heteroscedastic Gaussian Process (VHGP) approach while using variational Bayesian and Gaussian approximation for data modelling, estimation of the monitoring data uncertainty, and further data forecasting. The results demonstrate that the VHGP framework yields more robust regression results and the estimated confidence level can better depict the heteroscedastic variances of the noise in HSR data. Higher accuracy for both regression and forecasting is gained through VHGP and the position with maximum noise can be more accurately forecasted with a smooth varying confidence interval. Based on in-situ measurement data, the uncertainty levels for all sensors are estimated together with corresponding deformation profiles for the instrumented segment and three typical types of uncertainty are summarized during the M&F process of HSR track slab deformation.

Funder

National Natural Science Foundation of China (NSFC)

Ministry of Science and Technology of China

he Innovation and Technology Commission of Hong Kong SAR Government to the Hong Kong Branch of National Rail Transit Electrification and Automation Engineering Technology Research Center

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3