Abstract
With photoplethysmograph (PPG) sensors showing increasing potential in wearable health monitoring, the challenging problem of motion artifact (MA) removal during intensive exercise has become a popular research topic. In this study, a novel method that combines heart rate frequency (HRF) estimation and notch filtering is proposed. The proposed method applies a cascaded adaptive noise cancellation (ANC) based on the least mean squares (LMS)-Newton algorithm for preliminary motion artifacts reduction, and further adopts special heart rate frequency tracking and correction schemes for accurate HRF estimation. Finally, notch filters are employed to restore the PPG signal with estimated HRF based on its quasi-periodicity. On an open source data set that features intensive running exercise, the proposed method achieves a competitive mean average absolute error (AAE) result of 0.92 bpm for HR estimation. The practical experiments are carried out with the PPG evaluation platform developed by ourselves. Under three different intensive motion patterns, a 0.89 bpm average AAE result is achieved with the average correlation coefficient between recovered PPG signal and reference PPG signal reaching 0.86. The experimental results demonstrate the effectiveness of the proposed method for accurate HR estimation and robust MA removal in PPG during intensive exercise.
Funder
the State Grid Science and Technology Project
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献