Microcanonical Entropy, Partitions of a Natural Number into Squares and the Bose–Einstein Gas in a Box

Author:

De Gregorio Paolo,Rondoni LambertoORCID

Abstract

From basic principles, we review some fundamentals of entropy calculations, some of which are implicit in the literature. We mainly deal with microcanonical ensembles to effectively compare the counting of states in continuous and discrete settings. When dealing with non-interacting elements, this effectively reduces the calculation of the microcanonical entropy to counting the number of certain partitions, or compositions of a number. This is true in the literal sense, when quantization is assumed, even in the classical limit. Thus, we build on a moderately dated, ingenuous mathematical work of Haselgrove and Temperley on counting the partitions of an arbitrarily large positive integer into a fixed (but still large) number of summands, and show that it allows us to exactly calculate the low energy/temperature entropy of a one-dimensional Bose–Einstein gas in a box. Next, aided by the asymptotic analysis of the number of compositions of an integer as the sum of three squares, we estimate the entropy of the three-dimensional problem. For each selection of the total energy, there is a very sharp optimal number of particles to realize that energy. Therefore, the entropy is ‘large’ and almost independent of the particles, when the particles exceed that number. This number scales as the energy to the power of ( 2 / 3 ) -rds in one dimension, and ( 3 / 5 ) -ths in three dimensions. In the one-dimensional case, the threshold approaches zero temperature in the thermodynamic limit, but it is finite for mesoscopic systems. Below that value, we studied the intermediate stage, before the number of particles becomes a strong limiting factor for entropy optimization. We apply the results of moments of partitions of Coons and Kirsten to calculate the relative fluctuations of the ground state and excited states occupation numbers. At much lower temperatures than threshold, they vanish in all dimensions. We briefly review some of the same results in the grand canonical ensemble to show to what extents they differ.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference43 articles.

1. Statistical Mechanics—A Short Treatise;Gallavotti,1999

2. Statistical Thermodynamics;Münster,1969

3. Statistical Mechanics: Principles and Selected Applications;Hill,1987

4. Microcanonical fluctuations of a Bose system’s ground state occupation number

5. Fluctuations of the Particle Number in a Trapped Bose-Einstein Condensate

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3