Organic Farm Bedded Pack System Microbiomes: A Case Study with Comparisons to Similar and Different Bedded Packs

Author:

Neher Deborah A.,Andrews Tucker D.,Weicht Thomas R.,Hurd Asa,Barlow John W.

Abstract

Animal housing and bedding materials influence cow and farm worker exposure to microbial pathogens, biocontrol agents, and/or allergens. This case study represents an effort to characterize the bacterial and fungal community of bedding systems using an amplicon sequencing approach supplemented with the ecological assessment of cultured Trichocomaceae isolates (focusing on Penicillium and Aspergillus species) and yeasts (Saccharomycetales). Bedding from five certified organic dairy farms in northern Vermont USA were sampled monthly between October 2015 and May 2016. Additional herd level samples from bulk tank milk and two bedding types were collected from two farms to collect fungal isolates for culturing and ecology. Most of the microorganisms in cattle bedding were microbial decomposers (saprophytes) or coprophiles, on account of the bedding being composed of dead plant matter, cattle feces, and urine. Composition of bacterial and fungal communities exhibited distinct patterns of ecological succession measured through time and by bedding depth. Community composition patterns were related to management practices and choice of bedding material. Aspergillus and Penicillium species exhibited niche differentiation expressed as differential substrate requirements; however, they generally exhibited traits of early colonizers of bedding substrates, typically rich in carbon and low in nitrogen. Pichia kudriavzevii was the most prevalent species cultured from milk and bedding. P. kudriavzevii produced protease and its abundance directly related to temperature. The choice of bedding and its management represent a potential opportunity to curate the microbial community of the housing environment.

Funder

United States Department of Agriculture

University of Vermont College of Agriculture and Life Sciences Dairy Center of Excellence competitive USDA HATCH experiment station award

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3