Explainable AI Framework for Multivariate Hydrochemical Time Series

Author:

Thrun Michael C.ORCID,Ultsch Alfred,Breuer LutzORCID

Abstract

The understanding of water quality and its underlying processes is important for the protection of aquatic environments. With the rare opportunity of access to a domain expert, an explainable AI (XAI) framework is proposed that is applicable to multivariate time series. The XAI provides explanations that are interpretable by domain experts. In three steps, it combines a data-driven choice of a distance measure with supervised decision trees guided by projection-based clustering. The multivariate time series consists of water quality measurements, including nitrate, electrical conductivity, and twelve other environmental parameters. The relationships between water quality and the environmental parameters are investigated by identifying similar days within a cluster and dissimilar days between clusters. The framework, called DDS-XAI, does not depend on prior knowledge about data structure, and its explanations are tendentially contrastive. The relationships in the data can be visualized by a topographic map representing high-dimensional structures. Two state of the art XAIs called eUD3.5 and iterative mistake minimization (IMM) were unable to provide meaningful and relevant explanations from the three multivariate time series data. The DDS-XAI framework can be swiftly applied to new data. Open-source code in R for all steps of the XAI framework is provided and the steps are structured application-oriented.

Publisher

MDPI AG

Subject

General Economics, Econometrics and Finance

Reference99 articles.

1. Nitrogen processes in aquatic ecosystems;Durand,2011

2. Linking the hydrologic and biogeochemical controls of nitrogen transport in near-stream zones of temperate-forested catchments: a review

3. Overview of Hypoxia around the World

4. Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences;Howarth,1996

5. Sensors in the Stream: The High-Frequency Wave of the Present

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3