Interpretable Topic Extraction and Word Embedding Learning Using Non-Negative Tensor DEDICOM

Author:

Hillebrand LarsORCID,Biesner DavidORCID,Bauckhage Christian,Sifa Rafet

Abstract

Unsupervised topic extraction is a vital step in automatically extracting concise contentual information from large text corpora. Existing topic extraction methods lack the capability of linking relations between these topics which would further help text understanding. Therefore we propose utilizing the Decomposition into Directional Components (DEDICOM) algorithm which provides a uniquely interpretable matrix factorization for symmetric and asymmetric square matrices and tensors. We constrain DEDICOM to row-stochasticity and non-negativity in order to factorize pointwise mutual information matrices and tensors of text corpora. We identify latent topic clusters and their relations within the vocabulary and simultaneously learn interpretable word embeddings. Further, we introduce multiple methods based on alternating gradient descent to efficiently train constrained DEDICOM algorithms. We evaluate the qualitative topic modeling and word embedding performance of our proposed methods on several datasets, including a novel New York Times news dataset, and demonstrate how the DEDICOM algorithm provides deeper text analysis than competing matrix factorization approaches.

Funder

Bundesministerium für Bildung, Wissenschaft und Forschung

Publisher

MDPI AG

Subject

General Economics, Econometrics and Finance

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A detailed review on word embedding techniques with emphasis on word2vec;Multimedia Tools and Applications;2023-10-03

2. Special Issue “Selected Papers from CD-MAKE 2020 and ARES 2020”;Machine Learning and Knowledge Extraction;2023-01-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3