Effect of Mo.S.E. Closures on Wind Waves in the Venetian Lagoon: In Situ and Numerical Analyses

Author:

Favaretto ChiaraORCID,Manfè GiorgiaORCID,Volpato Matteo,Scarpa Gian MarcoORCID

Abstract

In the Venetian lagoon, the storm surge barriers (Mo.S.E. system) are crucial to prevent urban flooding during extreme stormy events. The inlet closures have some cascading effects on the hydrodynamics and sediment transports of this shallow tidal environment. The present study aims at investigating the effects of the Mo.S.E. closure on the wind-wave propagation inside the lagoon. In situ wave data were collected to establish a unique dataset of measurements recorded in front of San Marco square between July 2020 and December 2021, i.e., partially during the COVID-19 pandemic. Ten storm events were analyzed in terms of significant wave heights and simultaneous wind characteristics. This dataset allowed for validating a spectral wave model (SWAN) applied to the whole lagoon. The results show that the floodgate closures, which induce an artificial reduction of water levels, influence significant wave heights HS, which decrease on average by 22% compared to non-regulated conditions, but in the shallower areas (for example tidal flats and salt marshes), the predicted decrease is on average 48%. Consequently, the analysis suggests that the Mo.S.E. closures are expected to induce modifications in the wave overtopping, wave loads and lagoon morphodynamics.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3