Abattoir Wastewater Treatment in Anaerobic Co-Digestion with Sugar Press Mud in Batch Reactor for Improved Biogas Yield

Author:

Anyango Beatrice N.,Wandera Simon M.,Raude James M.ORCID

Abstract

Slaughterhouse wastewater (SHWW) has a great potential to generate biomethane energy when subjected to anaerobic digestion (AD). Nonetheless, the process is susceptible and prone to failure because of slow hydrolysis and the production of inhibitory compounds. Accordingly, to address this deficiency, anaerobic co-digestion (ACoD) is used to improve the treatment efficiency of the monodigestion of this high-strength waste and thereby increase methane production. The current investigation utilized the biochemical methane potential (BMP) test to assess the treatment performance of co-digested SHWW with sugar press mud (SPM) for improving biomethane energy recovery. It was established that the ACoD of SHWW with SPM increased methane (CH4) yield, enhanced organic matter removal efficiency and improved process stability, while also presenting synergistic effects. The anaerobic monodigestion (AMoD) of SHWW (100SHWW: 0SPM) showed a higher CH4 yield (348.40 CH4/g VS) compared with SPM (198.2 mL CH4/g VS). The 80% SPM: 20% SHWW mix ratio showed the optimum results with regard to organic matter removal efficiency (67%) and CH4 yield (478.40 mL CH4/g VS), with increments of 27% and 59% compared with AMoD of SHWW and SPM, respectively. However, it is also possible to achieve 5% and 46% CH4 yield increases under a 40% SPM: 60% SHWW mix proportion in comparison to the AMoD of SHWW and SPM, respectively. Furthermore, kinetic analysis of the study using a modified Gompertz model revealed that the CH4 production rate increased while the lag time decreased. The synergistic effects observed in this study demonstrate that incorporating SPM into the substrate ratios investigated can improve the AD of the SHWW. In fact, this represents the environmental and economic benefits of successfully implementing this alternative solution. Bioenergy recovery could also be used to supplement the country’s energy supply. This would help to increase the use of cleaner energy sources in electricity generation and heating applications, reducing the greenhouse gas effect.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference62 articles.

1. Potentialities of biotechnological recovery of methane, hydrogen and carboxylic acids from agro-industrial wastewaters

2. Water for Sustainable Food and Agriculture,2017

3. Meat and Dairy Production. OurWorldInData.org https://ourworldindata.org/meat-production

4. Kenya market trust and I-Dev international,2019

5. Anaerobic co-digestion of sewage sludge and slaughterhouse waste in existing wastewater digesters

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3