Evaluation of Original and Water Stress-Incorporated Modified Weather Research and Forecasting Vegetation Photosynthesis and Respiration Model in Simulating CO2 Flux and Concentration Variability over the Tibetan Plateau

Author:

Niu Hanlin123ORCID,Hu Xiao-Ming4ORCID,Shang Lunyu12,Meng Xianhong12ORCID,Wang Shaoying12,Li Zhaoguo12,Zhao Lin12,Chen Hao12,Deng Mingshan12,Sheng Danrui123

Affiliation:

1. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

2. Zoige Plateau Wetlands Ecosystem Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

3. University of Chinese Academy of Sciences, Beijing 100029, China

4. Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, OK 73104, USA

Abstract

Terrestrial carbon fluxes are crucial to the global carbon cycle. Quantification of terrestrial carbon fluxes over the Tibetan Plateau (TP) has considerable uncertainties due to the unique ecosystem and climate and scarce flux observations. This study evaluated our recent improvement of terrestrial flux parameterization in the weather research and forecasting model coupled with the vegetation photosynthesis and respiration model (WRF-VPRM) in terms of reproducing observed net ecosystem exchange (NEE), gross ecosystem exchange (GEE), and ecosystem respiration (ER) over the TP. The improvement of VPRM relative to the officially released version considers the impact of water stress on terrestrial fluxes, making it superior to the officially released model due to its reductions in bias, root mean square error (RMSE), and ratio of standard deviation (RSD) of NEE to 0.850 μmol·m−2·s−1, 0.315 μmol·m−2·s−1, and 0.001, respectively. The improved VPRM also affects GEE simulation, increasing its RSD to 0.467 and decreasing its bias and RMSE by 1.175 and 0.324 μmol·m−2·s−1, respectively. Furthermore, bias and RMSE for ER were lowered to −0.417 and 0.954 μmol·m−2·s−1, with a corresponding increase in RSD by 0.6. The improved WRF-VPRM simulation indicates that eastward winds drive the transfer of lower CO2 concentrations from the eastern to the central and western TP and the influx of low-concentration CO2 inhibits biospheric CO2 uptake. The use of an improved WRF-VPRM in this study helps to reduce errors, improve our understanding of the role of carbon flux cycle over the TP, and ultimately reduce uncertainty in the carbon flux budget.

Funder

National Science Foundation of China

West Light Foundation for Western Cross Team of the Chinese Academy of Sciences

Gansu Provincial Science and Technology Program

Chinese Academy of Sciences (CAS) “Light of West China” Program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3