Memory-Enhanced Twin Delayed Deep Deterministic Policy Gradient (ME-TD3)-Based Unmanned Combat Aerial Vehicle Trajectory Planning for Avoiding Radar Detection Threats in Dynamic and Unknown Environments

Author:

Li Jiantao1ORCID,Zhang Tianxian1ORCID,Liu Kai1ORCID

Affiliation:

1. School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

Abstract

Unmanned combat aerial vehicle (UCAV) trajectory planning to avoid radar detection threats is a complicated optimization problem that has been widely studied. The rapid changes in Radar Cross Sections (RCSs), the unknown cruise trajectory of airborne radar, and the uncertain distribution of radars exacerbate the complexity of this problem. In this paper, we propose a novel UCAV trajectory planning method based on deep reinforcement learning (DRL) technology to overcome the adverse impacts caused by the dynamics and randomness of environments. A predictive control model is constructed to describe the dynamic characteristics of the UCAV trajectory planning problem in detail. To improve the UCAV’s predictive ability, we propose a memory-enhanced twin delayed deep deterministic policy gradient (ME-TD3) algorithm that uses an attention mechanism to effectively extract environmental patterns from historical information. The simulation results show that the proposed method can successfully train UCAVs to carry out trajectory planning tasks in dynamic and unknown environments. Furthermore, the ME-TD3 algorithm outperforms other classical DRL algorithms in UCAV trajectory planning, exhibiting superior performance and adaptability.

Funder

National Natural Science Foundation of China

GF Science and Technology Special Innovation Zone Project

Fundamental Research Funds of Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3