Polarimetric Synthetic Aperture Radar Image Classification Based on Double-Channel Convolution Network and Edge-Preserving Markov Random Field

Author:

Shi Junfei12ORCID,Nie Mengmeng12,Ji Shanshan12,Shi Cheng12,Liu Hongying3ORCID,Jin Haiyan12ORCID

Affiliation:

1. School of Computer Science and Technology, Xi’an University of Technology, Xi’an 710048, China

2. Shaanxi Key Laboratory for Network Computing and Security Technology, Xi’an University of Technology, Xi’an 710048, China

3. Medical College, Tianjin University, Tianjin 300134, China

Abstract

Deep learning methods have gained significant popularity in the field of polarimetric synthetic aperture radar (PolSAR) image classification. These methods aim to extract high-level semantic features from the original PolSAR data to learn the polarimetric information. However, using only original data, these methods cannot learn multiple scattering features and complex structures for extremely heterogeneous terrain objects. In addition, deep learning methods always cause edge confusion due to the high-level features. To overcome these limitations, we propose a novel approach that combines a new double-channel convolutional neural network (CNN) with an edge-preserving Markov random field (MRF) model for PolSAR image classification, abbreviated to “DCCNN-MRF”. Firstly, a double-channel convolution network (DCCNN) is developed to combine complex matrix data and multiple scattering features. The DCCNN consists of two subnetworks: a Wishart-based complex matrix network and a multi-feature network. The Wishart-based complex matrix network focuses on learning the statistical characteristics and channel correlation, and the multi-feature network is designed to learn high-level semantic features well. Then, a unified network framework is designed to fuse two kinds of weighted features in order to enhance advantageous features and reduce redundant ones. Finally, an edge-preserving MRF model is integrated with the DCCNN network. In the MRF model, a sketch map-based edge energy function is designed by defining an adaptive weighted neighborhood for edge pixels. Experiments were conducted on four real PolSAR datasets with different sensors and bands. The experimental results demonstrate the effectiveness of the proposed DCCNN-MRF method.

Funder

National Natural Science Foundation of China

Science and Technology Program of Beilin District in Xi’an

National Key Laboratory of Geographic Information Engineering

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3