Adaptive Multi-Feature Fusion Graph Convolutional Network for Hyperspectral Image Classification

Author:

Liu Jie1,Guan Renxiang2ORCID,Li Zihao3,Zhang Jiaxuan1,Hu Yaowen2ORCID,Wang Xueyong4

Affiliation:

1. College of Management Science, Qufu Normal University, Rizhao 276800, China

2. College of Computer, National University of Defense Technology, Changsha 410073, China

3. Faculty of Computer Science, China University of Geosciences, Wuhan 430074, China

4. College of Mathematics and Statistics, Tianshui Normal University, Tianshui 741000, China

Abstract

Graph convolutional networks (GCNs) are a promising approach for addressing the necessity for long-range information in hyperspectral image (HSI) classification. Researchers have attempted to develop classification methods that combine strong generalizations with effective classification. However, the current HSI classification methods based on GCN present two main challenges. First, they overlook the multi-view features inherent in HSIs, whereas multi-view information interacts with each other to facilitate classification tasks. Second, many algorithms perform a rudimentary fusion of extracted features, which can result in information redundancy and conflicts. To address these challenges and exploit the strengths of multiple features, this paper introduces an adaptive multi-feature fusion GCN (AMF-GCN) for HSI classification. Initially, the AMF-GCN algorithm extracts spectral and textural features from the HSIs and combines them to create fusion features. Subsequently, these three features are employed to construct separate images, which are then processed individually using multi-branch GCNs. The AMG-GCN aggregates node information and utilizes an attention-based feature fusion method to selectively incorporate valuable features. We evaluated the model on three widely used HSI datasets, i.e., Pavia University, Salinas, and Houston-2013, and achieved accuracies of 97.45%, 98.03%, and 93.02%, respectively. Extensive experimental results show that the classification performance of the AMF-GCN on benchmark HSI datasets is comparable to those of state-of-the-art methods.

Funder

College Students’ Innovative Entrepreneurial Training Plan Program

Fundamental Research Founds for National University, China University of Geosciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3