Intelligent Eye-Controlled Electric Wheelchair Based on Estimating Visual Intentions Using One-Dimensional Convolutional Neural Network and Long Short-Term Memory

Author:

Higa Sho1ORCID,Yamada Koji2,Kamisato Shihoko3

Affiliation:

1. Graduate School of Engineering and Science, University of the Ryukyus, Nishihara 903-0213, Japan

2. Department of Engineering, University of the Ryukyus, Nishihara 903-0213, Japan

3. Department of Information and Communication Systems Engineering, National Institute of Technology, Okinawa College, Nago 905-2171, Japan

Abstract

When an electric wheelchair is operated using gaze motion, eye movements such as checking the environment and observing objects are also incorrectly recognized as input operations. This phenomenon is called the “Midas touch problem”, and classifying visual intentions is extremely important. In this paper, we develop a deep learning model that estimates the user’s visual intention in real time and an electric wheelchair control system that combines intention estimation and the gaze dwell time method. The proposed model consists of a 1DCNN-LSTM that estimates visual intention from feature vectors of 10 variables, such as eye movement, head movement, and distance to the fixation point. The evaluation experiments classifying four types of visual intentions show that the proposed model has the highest accuracy compared to other models. In addition, the results of the driving experiments of the electric wheelchair implementing the proposed model show that the user’s efforts to operate the wheelchair are reduced and that the operability of the wheelchair is improved compared to the traditional method. From these results, we concluded that visual intentions could be more accurately estimated by learning time series patterns from eye and head movement data.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3