Abstract
An initial public offering (IPO) is a type of public offering in which a company’s shares are sold to institutional and individual investors. While the majority of studies on IPOs have focused on the efficiency of raising capital and price adequacy in IPOs, studies on portfolio allocation strategies for IPO stocks are relatively scarce. This paper develops a machine learning investment strategy for IPO stocks based on rough set theory and a genetic algorithm (GA-rough set theory). To reduce issues of information asymmetry, we use nonfinancial data that are publicly available to individual and institutional investors in the IPO process. Based on the rule sets generated from the training sets, we conduct 120 tests with various conditions involving the target days and the partition of the training and testing sets, and we find excess returns of the constructed portfolios compared to the benchmark portfolios. Investors in IPO stocks can formulate more efficient investment strategies using our system. In this sense, the system developed in this paper contributes to the efficiency of financial markets and helps achieve sustained economic growth.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Reference24 articles.
1. Portfolio selection;Markowitz;J. Financ.,1952
2. Rough set approach to knowledge-based decision support
3. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence;Holland,1992
4. Why new issues are underpriced
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献