A Machine Learning Portfolio Allocation System for IPOs in Korean Markets Using GA-Rough Set Theory

Author:

Kim Jiwoo,Shin Sanghun,Lee Hee Soo,Oh Kyong JooORCID

Abstract

An initial public offering (IPO) is a type of public offering in which a company’s shares are sold to institutional and individual investors. While the majority of studies on IPOs have focused on the efficiency of raising capital and price adequacy in IPOs, studies on portfolio allocation strategies for IPO stocks are relatively scarce. This paper develops a machine learning investment strategy for IPO stocks based on rough set theory and a genetic algorithm (GA-rough set theory). To reduce issues of information asymmetry, we use nonfinancial data that are publicly available to individual and institutional investors in the IPO process. Based on the rule sets generated from the training sets, we conduct 120 tests with various conditions involving the target days and the partition of the training and testing sets, and we find excess returns of the constructed portfolios compared to the benchmark portfolios. Investors in IPO stocks can formulate more efficient investment strategies using our system. In this sense, the system developed in this paper contributes to the efficiency of financial markets and helps achieve sustained economic growth.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference24 articles.

1. Portfolio selection;Markowitz;J. Financ.,1952

2. Rough set approach to knowledge-based decision support

3. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence;Holland,1992

4. Why new issues are underpriced

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3