Abstract
Adaptive and flexible control techniques have recently been examined as methods of controlling flow and reducing the potential noise in vertical axis wind turbines. Two-Dimensional (2D) fluid flow simulation around rod-airfoil is addressed in this study as a simple component of the wind turbine by using Unsteady Reynolds Averaged Navier–Stokes (URANS) equations for prediction of noise using Ffowcs Williams-Hawkings (FW-H) analogy. To control the flow and reduce noise, the active controlling vibration rod method is utilized with a maximum displacement ranging from 0.01 C to 1 C (C: airfoil chord). Acoustic assessment indicates that the leading edge of the blade produces noise, that by applying vibration in cylinder, blade noise in 0.1 C and 1 C decreases by 22 dB and 35 dB, respectively. Applying vibration is aerodynamically helpful since it reduces the fluctuations in the airfoil lift force by approximately 48% and those in the rod by about 46%. Strouhal assessment (frequency) shows that application of control is accompanied by 20% increase. Applying vibration in the rod reduces the flow fluctuations around the blade, thus reduces the wind turbine blade noise. This idea, as a simple example, can be used to study the incoming flow to turbines and their blades that are affected by the upstream flow.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献