Solar Prosumers in the German Energy Transition: A Multi-Level Perspective Analysis of the German ‘Mieterstrom’ Model

Author:

Moser Raphael,Xia-Bauer Chun,Thema JohannesORCID,Vondung Florin

Abstract

The expansion of photovoltaics in German cities has so far fallen short of expectations. The concept of ‘tenant electricity’ (‘Mieterstrom’ in German), in which tenants of a building are supplied with solar power produced on site, offers great potential here. A study on behalf of the German Federal Ministry for Economic Affairs and Energy estimated the number of tenant households with good conditions for solar tenant electricity at 3.8 million. At the same time, the federal tenant electricity promotion scheme has been in place since 2017, but only about 1% of the annual budget has been claimed. The aim of this study is to identify the barriers for and drivers of diffusion of the tenant electricity model. To this end, a qualitative document analysis and a range of semi-structured expert interviews have been conducted. The theoretical framework used to guide the analysis is the multi-level perspective. The main barrier found for tenant electricity diffusion is the legal framework on the regime level, which also leads to high transaction costs of implementing tenant electricity. A social barrier is the inertia of some residents to actively concern themselves with their electricity supply and switch to a tenant electricity contract. Among its drivers are long-term trends such as the increasing electricity demand in urban areas, technical developments like blockchain technology and the increasing deployment of smart meters, and the EU Renewable Energy Directive. As long as the restrictive legal framework prevails, the further diffusion of tenant electricity will remain limited.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3