Test of a New Low-Speed Compressed Air Engine for Energy Recovery

Author:

Rząsa MariuszORCID,Łukasiewicz EwelinaORCID,Wójtowicz Dariusz

Abstract

The paper presents a new design solution for the multi-cylinder compressed air engine, described in the PL 216801 patent. A characteristic feature of the engine is its double-piston operation with pistons working in pairs in opposition and a reciprocating movement in toroidal cylinders. The energy of compressed air was used more effectively in the described engine than in the solutions known so far. Comparing the engine built in accordance with the PL 216801 patent with the parameters of the MP165 and MP3000 engines, lower air consumption in relation to the power generated on the shaft is demonstrated. The described engine uses only one crankshaft and one straight complex shaft, which constitutes an innovative combination of pistons, while maintaining the same engine operation as in the case of two crankshafts operating with phase shift and working chamber shift. Such a solution results in a reduction in the harmful space occurring at the beginning of the power stroke to the value close to “zero”—the necessity to maintain the minimum distance between the pistons working in one cylinder when they are at their closest exists only to for the sake of collision-free operation—which is very desirable for the compressed engine operating with a shift of the working chamber. The mechanical efficiency of the engine has also been improved by guiding the pistons on the complex shaft, and the number of kinematic nodes was decreased by applying only three connecting rods supporting six pistons, which also makes it possible to improve the power and mass relation by approximately 25% in comparison with the currently known engines of similar power.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference32 articles.

1. Study About Engine Operated By Compressed Air (C.A.E): A Pneumatic Power Source

2. Fabrication of Pneumatic Four Wheeler;Fernandez;Int. J. New Technol. Res.,2018

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3