Abstract
This paper focuses on the robust distributed secondary voltage restoration control of AC microgrids (MGs) under multiple communication delays and nonlinear model uncertainties. The problem is addressed in a multi-agent fashion where the generators’ local controllers play the role of cooperative agents communicating over a network and where electrical couplings among generators are interpreted as disturbances to be rejected. Communications are considered to be affected by heterogeneous network-induced time-varying delays with given upper-bounds and the MG is subjected to nonlinear model uncertainties and abrupt changes in the operating working condition. Robustness against uncertainties is achieved by means of an integral sliding mode control term embedded in the control protocol. Then, the global voltage restoration stability, despite the communication delays, is demonstrated through a Lyapunov-Krasovskii analysis. Given the delays’ bounds, and because the resulting stability conditions result in being non-convex with respect to the controller gain, then a relaxed linear matrix inequalities-based tuning criteria is developed to maximize the controller tuning, thus minimizing the restoration settling-time. By means of that, a criteria to estimate the maximal delay margin tolerated by the system is also provided. Finally, simulations on a faithful nonlinear MG model, showing the effectiveness of the proposed control strategy, are further discussed.
Funder
Regione Autonoma della Sardegna
Fondazione di Sardegna
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献