Operating Hardware Impact on the Heat Transfer Properties of Windows

Author:

Misiopecki Cezary,Hart Robert,Gustavsen Arild,Jelle Bjørn PetterORCID

Abstract

Despite significant advancements in fenestration technology in the last two decades, the thermal transmittance of fenestration products is still significantly higher than that of walls. This corresponds to 60% of the total energy loss of a modern building envelope through the windows. Hence, further development and improvements of fenestration products are necessary. Increasingly stringent codes and standards for fenestration stimulate industry to work on improved solutions. Thus, it is crucial that assessment techniques are able to account for innovations accurately. The thermal effects of non-continuous hardware in window frames are currently ignored by international rating procedures. A preliminary investigation conducted by our team showed significant performance degradation in two of the three out-opening casement profiles caused by the presence of operating hardware. Frames with the structure made of vinyl and fiberglass consist of many air cavities that are penetrated by operating hardware made of highly conductive materials. In these frames, in order to have an accurate assessment, it may be required to employ three-dimensional modeling due to the convective nature of heat transfer within the cavities. However, in this study, we demonstrate that the three-dimensional (3D) effects of non-continuous hardware can be approximated accurately with simpler two-dimensional (2D) simulations. We then develop a simplified model based on weighted average capable of replacing the time- and computation-intensive 3D simulations with 2D simulations and validate it against market available frames and their corresponding hardware. Validation results show that our approximation technique results in discrepancies lower than 0.05 W/(m2K), or 3% of the total thermal transmittance. Thus, we conclude that simplified 2D simulation models may be used for predicting hardware impact in window frames with reasonable accuracy. As windows and glazing structures are becoming ever better thermally insulated, it is becoming even more important to be able to model the impact of the operating hardware on the total thermal performance in order to design the best windows possible and not let the operating hardware ruin an otherwise well-proven design, which is hence addressed in this study.

Funder

U.S. Department of Energy

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3