Layout Comparison and Parameter Optimization of Supercritical Carbon Dioxide Coal-Fired Power Generation Systems under Environmental and Economic Objectives

Author:

Chen Dongxu,Han Zhonghe,Bai Yaping,Guo Dongyang,Zhao Linfei,Li PengORCID

Abstract

In the current studies, the supercritical carbon dioxide coal-fired power generation systems show efficiency and cost advantages over the traditional steam-based power systems. However, few studies have considered simultaneously environmental and economic objectives in the multi-objective analysis process. This study conducts a layout comparison and parameter optimization of the systems under the above two objectives. Initially, the thermodynamic, environmental, and economic models of the systems are established. Subsequently, the optimal layout is determined by the two-stage layout comparison. Further, multi-objective optimization is performed for the selected layout, and the optimal design parameters are determined by the decision process. Finally, the sensitivities of three selected parameters to the optimization results are analyzed. The results show that the basic layout coupled with overlap and intercooling schemes is optimal. Its ultimate environmental impact (UEI) and levelized cost of electricity (LCOE) are 219.8 kp-eq and 56.9 USD/MWh, respectively. The two objectives UEI and LCOE are conflicting. Based on a trade-off between them, the maximum temperature/pressure of the system is determined to be 635.3 °C/30.1 MPa. The coal price per unit of heat shows the highest sensitivity, and the pinch temperature difference of the recuperator shows opposite sensitivities at the UEI below 218 kp-eq and above 223 kp-eq.

Funder

Hebei Province Graduate Innovation Funding Project

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3