Affiliation:
1. Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, I-16146 Genova, Italy
2. Istituto Nazionale di Fisica Nucleare—Sezione di Genova, Via Dodecaneso 33, I-16146 Genova, Italy
Abstract
We consider the covariant gauge field theory of fractons, which describes a new type of quasiparticles exhibiting novel and non-trivial properties. In particular, we focus on the field theoretical peculiarities which characterize this theory, starting from the fact that, if we accept the paradigm that quantum field theories are defined by their symmetries, fractons unavoidably come together with linearized gravity. The standard Faddeev–Popov procedure to gauge fix the theory leads to a scalar gauge condition, which has two important drawbacks: it is frozen in the Landau gauge and linearized gravity cannot be obtained as a limit. In this paper, we adopt a tensorially alternative gauge fixing, which avoids both problems. In particular, this allows to show that important physical features, such as counting of the degrees of freedom, do not depend on a particular gauge choice, as expected. Moreover, the resulting gauge fixed theory contains both fractons and linearized gravity as a limit, differently from the standard scalar choice.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献