Utilizing Full Degrees of Freedom of Control in Voltage Source Inverters to Support Micro-Grid with Symmetric and Asymmetric Voltage Requirements

Author:

Rasool Akhtar1ORCID,Ahmad Fiaz2ORCID,Fakhar Muhammad Salman3ORCID,Kashif Syed Abdul Rahman3ORCID,Matlotse Edwin1

Affiliation:

1. Department of Electrical Engineering, University of Botswana, Gaborone UB 0061, Botswana

2. Department of Electrical and Computer Engineering, Air University, Islamabad 44000, Pakistan

3. Department of Electrical Engineering, University of Engineering and Technology, Lahore 54000, Pakistan

Abstract

This article proposes a novel equivalent control method for voltage source inverters (VSI) with disturbance observers (DOB) to support the symmetric and asymmetric voltage requirements of a micro-grid (MG) while also matching the MG output power requirements. The method leverages the degrees of freedom (DOF) of the VSI under symmetric and asymmetric MG voltage conditions by utilizing the mean-point voltage of the MG, which is often overlooked in literature studies due to this being grounded. The method enables the three-phase inverter to generate voltages as needed by the MG inconsistently due to changing loads in the MG circuits or phases. The method is also insensitive to disturbances because of the DOB, being part of the controller. The proposed method is validated under both the balance and imbalance voltage demands of the MG. The mean voltage of the MG is used as a set-point to be corroborated as a mean voltage at the inverter’s output, in addition to active-reactive power references. The novel model is developed by augmenting the new, mean-point voltage as part of the system dynamics. The proposed method is simulated in MATLAB/Simulink® and is verified for its hardiness and effectiveness.

Funder

University of Botswana

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3