Kernel Estimation of the Extropy Function under α-Mixing Dependent Data

Author:

Maya Radhakumari1ORCID,Irshad Muhammed Rasheed2ORCID,Bakouch Hassan34ORCID,Krishnakumar Archana2,Qarmalah Najla5ORCID

Affiliation:

1. Department of Statistics, University College, Trivandrum 695 034, Kerala, India

2. Department of Statistics, Cochin University of Science and Technology, Cochin 682 022, Kerala, India

3. Department of Mathematics, College of Science, Qassim University, Buraydah 51452, Saudi Arabia

4. Department of Mathematics, Faculty of Science, Tanta University, Tanta 31111, Egypt

5. Department of Mathematical Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia

Abstract

Shannon developed the idea of entropy in 1948, which relates to the measure of uncertainty associated with a random variable X. The contribution of the extropy function as a dual complement of entropy is one of the key modern results based on Shannon’s work. In order to develop the inferential aspects of the extropy function, this paper proposes a non-parametric kernel type estimator as a new method of measuring uncertainty. Here, the observations are exhibiting α-mixing dependence. Asymptotic properties of the estimator are proved under appropriate regularity conditions. For comparison’s sake, a simple non-parametric estimator is proposed, and in this respect, the performance of the estimator is investigated using a Monte Carlo simulation study based on mean-squared error and using two real-life data.

Funder

Princess Nourah bint Abdulrahman University Researchers

Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

General Medicine

Reference22 articles.

1. A mathematical theory of communication;Shannon;Bell Syst. Tech. J.,1948

2. Cover, T.M., and Thomas, J.A. (2006). Elements of Information Theory, John Wiley & Sons. [2nd ed.].

3. Extropy complementary dual of entropy;Frank;Stat. Sci.,2015

4. Extropy for past life based on classical records;Jose;J. Indian Soc. Probab. Stat.,2021

5. Training deep neural networks with non-uniform frame-level cost function for automatic speech recognition;Becerra;Multimed. Tools Appl.,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3