Fault Diagnosis for China Space Station Circulating Pumps: Prototypical Network with Uncertainty Theory

Author:

Wu Wenbo12,Zou Tianji12,Guo Dong12,Zhang Lu12,Wang Ke12ORCID,Li Xuzhi12

Affiliation:

1. Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing 100094, China

2. The Key Laboratory of Space Utilization, 9 Dengzhuang South Road, Haidian Distirct, Beijing 100094, China

Abstract

Methods for fault diagnosis based on metric learning, in which a query sample is classified by picking the closest prototype from the support set based on their feature similarities, have been the subject of many studies. In real-world applications of in-orbit products, such as circulating pumps, the computation of similarity between different pairs is prone to different degrees of inaccuracy, especially epistemic uncertainty. Knowing and considering the uncertainty of similarity may improve fault detection accuracy. This article provides a unique approach to fault diagnosis based on Prototypical Network (Pro-Net) and Uncertainty Theory. In particular, we use epistemic uncertainty by altering the representation of prototypes from a deterministic scalar to an uncertain representation. To assess the similarity between a query and the prototypes in a support set, we calculate the uncertain distance between the pairs using cross-entropy. Experiments with symmetrical structures reveal that our proposed method significantly enhances classification precision and achieves state-of-the-art performance. It improves the reliability of fault diagnosis and reduces the risk of making erroneous judgments in safety-critical systems, decreasing the possibility of adverse consequences.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Belief reliability index determination method based on group decision‐making;Quality and Reliability Engineering International;2023-08-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3