Study on the Anisotropy of Strength Properties of Columnar Jointed Rock Masses Using a Geometric Model Reconstruction Method Based on a Single-Random Movement Voronoi Diagram of Uniform Seed Points

Author:

Zhu Zhende12,Wang Luxiang12ORCID,Zhu Shu13,Wu Junyu12

Affiliation:

1. Key Laboratory of Ministry of Education of Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China

2. Jiangsu Research Center for Geotechnical Engineering, Hohai University, Nanjing 210098, China

3. College of Harbor, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, China

Abstract

The unique structural characteristics and special symmetry of columnar jointed rock mass result in its complex mechanical properties and strong anisotropy, which seriously affects the safety of engineering construction. To better simulate natural columnar jointed rock mass, a geometric model reconstruction method based on a single-random movement Voronoi diagram of uniform seed points using the feasible geological parameters of horizontal polygon density, irregular factor, dip angle, strike angle, transverse joint spacing, and transverse joint penetration rate is proposed in this paper. Based on this method, numerical simulation of CJRM models with varying strike angles, dip angles, and irregular factors under uniaxial compression were conducted. The results show that the uniaxial compression strengths versus strike angle and dip angle both decrease with the increase in the irregular factor, showing a U-shape and a gentle W-shape, respectively. The strength anisotropy of the strike angle decreases from 1.1057 to 1.0395 with the increase in the irregular factor, indicating relatively isotropy. With the increase int the irregular factor, the strength anisotropy of the dip angle increases from 4.3381 to 6.7953, indicating an increasing strong anisotropy at a high degree, and the effect of the irregular factor on strength behavior has the strongest and weakest impact at the dip angles of 60° and 90°, respectively.

Funder

National Natural Science Foundation of China

Jiangsu Excellent Postdoctoral Program

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3