Affiliation:
1. Department of Mathematics and Statistics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
2. Department of Mathematics, University of Sialkot, Sialkot 51310, Pakistan
Abstract
In this article, we use the applications of special functions in the form of Chebyshev polynomials to find the approximate solution of hyperbolic partial differential equations (PDEs) arising in the mathematical modeling of transmission line subject to appropriate symmetric Dirichlet and Neumann boundary conditions. The special part of the model equation is discretized using a Chebyshev differentiation matrix, which is centro-asymmetric using the symmetric collocation points as grid points, while the time derivative is discretized using the standard central finite difference scheme. One of the disadvantages of the Chebyshev differentiation matrix is that the resultant matrix, which is obtained after replacing the special coordinates with the derivative of Chebyshev polynomials, is dense and, therefore, needs more computational time to evaluate the resultant algebraic equation. To overcome this difficulty, an algorithm consisting of fast Fourier transformation is used. The main advantage of this transformation is that it significantly reduces the computational cost needed for N collocation points. It is shown that the proposed scheme converges exponentially, provided the data are smooth in the given equations. A number of numerical experiments are performed for different time steps and compared with the analytical solution, which further validates the accuracy of our proposed scheme.
Funder
Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献