A Quasi-Affine Transformation Evolutionary Algorithm Enhanced by Hybrid Taguchi Strategy and Its Application in Fault Detection of Wireless Sensor Network

Author:

Pan Jeng-Shyang12ORCID,Wang Ru-Yu1ORCID,Chu Shu-Chuan1ORCID,Tseng Kuo-Kun3,Fan Fang4

Affiliation:

1. College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China

2. Department of Information Management, Chaoyang University of Technology, Taichung 41349, Taiwan

3. Department of Computer Science and Technology, Harbin Institute of Technology, Shenzhen 150006, China

4. College of Intelligent Equipment, Shandong University of Science and Technology, Taian 271000, China

Abstract

A quasi-affine transformation evolutionary algorithm improved by the Taguchi strategy, levy flight and the restart mechanism (TLR-QUATRE) is proposed in this paper. This algorithm chooses the specific optimization route according to a certain probability, and the Taguchi strategy helps the algorithm achieve more detailed local exploitation. The latter two strategies help particles move at random steps of different sizes, enhancing the global exploration ability. To explore the new algorithm’s performance, we make a detailed analysis in seven aspects through comparative experiments on CEC2017 suite. The experimental results show that the new algorithm has strong optimization ability, outstanding high-dimensional exploration ability and excellent convergence. In addition, this paper pays attention to the demonstration of the process, which makes the experimental results credible, reliable and explainable. The new algorithm is applied to fault detection in wireless sensor networks, in which TLR-QUATRE is combined with back-propagation neural network (BPNN). This study uses the symmetry of generation and feedback for network training. We compare it with other optimization structures through eight public datasets and one actual landing dataset. Five classical machine learning indicators and ROC curves are used for visualization. Finally, the robust adaptability of TLR-QUATRE on this issue is confirmed.

Publisher

MDPI AG

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3