Strength Properties and Damage Evolution Mechanism of Single-Flawed Brazilian Discs: An Experimental Study and Particle Flow Simulation

Author:

Bai Yao12ORCID,Dou Haoyu1,Sun Peng1,Ma Tiancheng1,Wang Yujing1,Wang Yuqin1

Affiliation:

1. School of Mechanics and Civil Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China

2. State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing 100083, China

Abstract

Understanding the tensile strength properties and damage evolution mechanism in fissured rock is very important to fundamental research and engineering design. The effects of flaw dip angle on the tensile strength, macroscopic crack propagation and failure mode of symmetrical Brazilian discs of rock-like materials were investigated. A parallel bonding model was proposed to examine the damage of pre-flawed discs under splitting the load. The microscopic parameters of particles and bonds in the model that can characterize rock-like materials’ mechanical and deformation properties were obtained by calibrating against the laboratory test results. The crack development, energy evolution and damage characteristics of Brazil discs containing a single pre-existing flaw were studied at the microscopic scale. The results show that the flaw significantly weakens the strength of the Brazilian disc, and both the peak load and the initial cracking load decrease with increasing flaw angle. The failure modes of the rock-like specimens are mainly divided into three types: wing crack penetration damage mode, tensile-shear penetration damage mode and radial penetration failure mode. Except for the flaw dip angle 0°, the wing cracks generally sprouted at the tip of the pre-flaw, and the wing cracks at both tips of the pre-flaw are centrosymmetric. Crack coalescence was concentrated in the post-peak stage. Based on the particle flow code (PFC) energy partitions, the damage variables characterized by dissipation energy were proposed. The disc specimen’s pre-peak damage variables and peak damage variables decreased with increasing flaw angle, and the damage was concentrated in the post-peak phase.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

China University of Mining and Technology (Beijing) Undergraduate Innovation Training Program

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3