Processing Fractional Differential Equations Using ψ-Caputo Derivative

Author:

Tayeb Mahrouz1,Boulares Hamid2,Moumen Abdelkader3ORCID,Imsatfia Moheddine4ORCID

Affiliation:

1. Department of Mathematics, Faculty of Sciences, University of Ibn Khladoun, BP P 78 Zaaroura, Tiaret 14000, Algeria

2. Laboratory of Analysis and Control of Differential Equations “ACED”, Faculty MISM, Department of Mathematics, University of 8 May 1945 Guelma, P.O. Box 401, Guelma 24000, Algeria

3. Department of Mathematics, Faculty of Science, University of Ha’il, Ha’il 55425, Saudi Arabia

4. Department of Mathematics, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia

Abstract

Recently, many scientists have studied a wide range of strategies for solving characteristic types of symmetric differential equations, including symmetric fractional differential equations (FDEs). In our manuscript, we obtained sufficient conditions to prove the existence and uniqueness of solutions (EUS) for FDEs in the sense ψ-Caputo fractional derivative (ψ-CFD) in the second-order 1<α<2. We know that ψ-CFD is a generalization of previously familiar fractional derivatives: Riemann-Liouville and Caputo. By applying the Banach fixed-point theorem (BFPT) and the Schauder fixed-point theorem (SFPT), we obtained the desired results, and to embody the theoretical results obtained, we provided two examples that illustrate the theoretical proofs.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3