Fomes fomentarius as a Bio-Template for Heteroatom-Doped Carbon Fibers for Symmetrical Supercapacitors

Author:

Chernysheva Daria1ORCID,Konstantinov Maksim1,Sidash Ekaterina1,Baranova Tatiana1,Klushin Victor1,Tokarev Denis1,Andreeva Veronica1,Kolesnikov Evgeny2ORCID,Kaichev Vasily3ORCID,Gorshenkov Mikhail2ORCID,Smirnova Nina1

Affiliation:

1. Research Institute “Nanotechnologies and New Materials”, Platov South-Russian State Polytechnic University (NPI), 346428 Novocherkassk, Russia

2. Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology MISiS, 119049 Moscow, Russia

3. Department of Catalysis Research, Boreskov Institute of Catalysis, 630090 Novosibirsk, Russia

Abstract

Nowadays, commercial electric double-layer supercapacitors mainly use porous activated carbons due to their high specific surface area, electrical conductivity, and chemical stability. A feature of carbon materials is the possibility of obtaining them from renewable plant biomass. In this study, fungi (Fomes fomentarius) were used as a bio-template for the preparation of carbon fibers via a combination of thermochemical conversion approaches, including a general hydrothermal pre-carbonization step, as well as subsequent carbonization, physical, or chemical activation. The relationships between the preparation conditions and the structural and electrochemical properties of the obtained carbon materials were determined using SEM, TEM, EDAX, XPS, cyclic voltammetry, galvanostatic measurements, and EIS. It was shown that hydrothermal pretreatment in the presence of phosphoric acid ensured the complete removal of inorganic impurities of raw fungus hyphae, but at the same time, saved some heteroatoms, such as O, N, and P. Chemical activation using H3PO4 increased the amount of phosphorus in the carbon material and saved the natural fungus’s structure. The combination of a hierarchical pore structure with O, N, and P heteroatom doping made it possible to achieve good electrochemical properties (specific capacitance values of 220 F/g) and excellent stability after 25,000 charge/discharge cycles in a three-electrode cell. The electrochemical performance in both three- and two-electrode cells exceeded or was comparable to other biomass-derived porous carbons, making it a prospective candidate as an electrode material in symmetrical supercapacitors.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3