Measuring and Analyzing Operational Efficiency and Returns to Scale in a Time Horizon: Assessment of China’s Electricity Generation & Transmission at Provincial Levels

Author:

Sueyoshi Toshiyuki,Zhang Ruchuan,Li AijunORCID

Abstract

This study discusses the assessment of OE (operational efficiency) and RTS (returns to scale) over a time horizon. Many previous DEA (Data Envelopment Analysis) studies have discussed how to measure OE/RTS. However, their works did not consider the measurement over time. The important feature of the proposed approach is that our models are different from standard ones in terms of factor (inputs and outputs) unification. A problem with standard models is that they produce different efficiency measures for input and output orientations. Consequently, they yield different OE and RTS estimates depending upon which production factor is used for measurement. To handle the difficulty, we develop a new DEA formulation whose efficiency measure is determined after combining inputs and outputs, and then we discuss how to measure the types of RTS. The other methodological feature is that the proposed model incorporates a time horizon. As an empirical application, this study considers electricity generation and transmission across Chinese provinces from 2006 to 2019. The first key outcome is that the performance of China’s electricity generation and transmission system tends to improve with an annual growth rate of 0.45% across time. The second outcome is that, during the observed periods, China has more occurrences of decreasing rather than increasing RTS. As an implication, some provinces (e.g., Jiangxi and Hainan) need to increase their generation sizes to enhance their OE measures, while other provinces (e.g., Jiangsu and Zhejiang) should decrease their generation sizes. Finally, this study confirms significant technological heterogeneity across Chinese provinces and groups.

Funder

Taishan Scholars, the National Natural Science Foundation of China

Young Scholars of Ideology and Culture Propaganda of the Publicity Department, CCCPC, the Humanities and Social Sciences Research Major Project of Shandong University

SDU Outstanding Scholar, and the Shandong Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3