A Surrogate-Assisted Adaptive Bat Algorithm for Large-Scale Economic Dispatch

Author:

Pang AokangORCID,Liang HuijunORCID,Lin ChenhaoORCID,Yao LeiORCID

Abstract

Large-scale grids have gradually become the dominant trend in power systems, which has increased the importance of solving the challenges associated with large-scale economic dispatch (LED). An increase in the number of decision variables enlarges the search-space scale in LED. In addition to increasing the difficulty of solving algorithms, huge amounts of computing resources are consumed. To overcome this problem, we proposed a surrogate-assisted adaptive bat algorithm (GARCBA). On the one hand, to reduce the execution time of LED problems, we proposed a generalized regression neural network surrogate model based on a self-adaptive “minimizing the predictor” sampling strategy, which replaces the original fuel cost functions with a shorter computing time. On the other hand, we also proposed an improved hybrid bat algorithm (RCBA) named GARCBA to execute LED optimization problems. Specifically, we developed an evolutionary state evaluation (ESE) method to increase the performance of the original RCBA. Moreover, we introduced the ESE to analyze the population distribution, fitness, and effective radius of the random black hole in the original RCBA. We achieved a substantial improvement in computational time, accuracy, and convergence when using the GARCBA to solve LED problems, and we demonstrated this method’s effectiveness with three sets of simulations.

Funder

National Natural Science Foundation of China

National Natural Science Foundation of Hubei Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Expert knowledge data-driven based actor–critic reinforcement learning framework to solve computationally expensive unit commitment problems with uncertain wind energy;International Journal of Electrical Power & Energy Systems;2024-08

2. Distributed Photovoltaic Storage Cluster Multi-Objective Optimization Scheduling Strategy Based on Improved Bat Algorithm;2024 6th International Conference on Energy Systems and Electrical Power (ICESEP);2024-06-21

3. Achieving Cost Efficiency and Load Sharing in Power Systems: The Superiority of Adaptive BAT Algorithm;2024 International Conference on Communication, Computing and Internet of Things (IC3IoT);2024-04-17

4. A binary bat algorithm with improved crossover operators and Cauchy mutation for unit commitment problem;The Journal of Supercomputing;2024-01-22

5. Bio-Inspired Computing: Theories and Applications;Communications in Computer and Information Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3