Optimal Management of a Virtual Power Plant Consisting of Renewable Energy Resources and Electric Vehicles Using Mixed-Integer Linear Programming and Deep Learning

Author:

Ahmadian AliORCID,Ponnambalam Kumaraswamy,Almansoori AliORCID,Elkamel AliORCID

Abstract

Recently, renewable energy resources (RESs) and electric vehicles (EVs), in addition to other distributed energy resources (DERs), have gained high popularity in power systems applications. These resources bring quite a few advantages for power systems—reducing carbon emission, increasing efficiency, and reducing power loss. However, they also bring some disadvantages for the network because of their intermittent behavior and their high number in the grid which makes the optimal management of the system a tough task. Virtual power plants (VPPs) are introduced as a promising solution to make the most out of these resources by aggregating them as a single entity. On the other hand, VPP’s optimal management depends on its accuracy in modeling stochastic parameters in the VPP body. In this regard, an efficient approach for a VPP is a method that can overcome these intermittent resources. In this paper, a comprehensive study has been investigated for the optimal management of a VPP by modeling different resources—RESs, energy storages, EVs, and distributed generations. In addition, a method based on bi-directional long short-term memory networks is investigated for forecasting various stochastic parameters, wind speed, electricity price, load demand, and EVs’ behavior. The results of this study show the superiority of BLSTM methods for modeling these parameters with an error of 1.47% in comparison with real data. Furthermore, to show the performance of BLSTMs, its results are compared with other benchmark methods such as shallow neural networks, support vector machines, and long short-term memory networks.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3