Piston Thermal Analysis of Heavy Commercial Vehicle Diesel Engine Using Lanthanum Zirconate Thermal-Barrier Coating

Author:

Fei ChunguangORCID,Lei Tong,Qian Zuoqin,Shu ZihaoORCID

Abstract

When a commercial vehicle diesel engine works for an extended period of time at the torque spot, it can easily cause a mechanical failure due to the high temperature of the piston. In this paper, the temperature plug method was used to measure the temperature of the piston at the maximum torque spot. In order to reduce the failure caused by high temperature, the finite element analysis software Ansys was used in this paper to study the effects of different thicknesses of ceramic coatings on the piston surface of a diesel engine on the maximum temperature of the piston substrate. The bonding layer of the ceramic coating was NiCoCrAlY with a thickness of 0.1 mm, and the insulating layer was a La2Zr2O7 coating with respective thicknesses of 0.2 mm, 0.3 mm, 0.5 mm, 0.7 mm, and 0.9 mm. When the thickness of the ceramic coating was increased from 0.3 mm to 1.0 mm, the maximum temperature of the piston base decreased from 347.9 °C to 267.46 °C. This showed that the use of a thermal-barrier coating can effectively reduce the maximum temperature of the piston and greatly improve the safety of engine operation.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference16 articles.

1. Internal Combustion Engine Fundamentals;Heywood,1988

2. Modeling of heat conduction within chamber walls for multidimensional internal combustion engine simulations

3. Thermal Barrier Coatings for Low Emission, High Efficiency Diesel Engine Applications;Beardsley,1999

4. Heat Transfer Measurement Comparisons in Insulated and Non-Insulated Diesel Engines;Cheng,1989

5. Experimental investigation of Al2O3/8YSZ and CeO2/8YSZ plasma sprayed thermal barrier coating on diesel engine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3