Methane Adsorption Properties in Biomaterials: A Possible Route to Gas Storage and Transportation

Author:

Du Sanya,Qu Yixin,Li HuiORCID,Yu Xiaohui

Abstract

Methane can be stored in biomaterials rapidly in hydrate form with low energy consumption. Considering the high cost of biomaterials (vegetables or fruits), agricultural wastes may be more practical. In this work, the characteristics of methane storage in two low-cost agricultural wastes, eggplant, and static water, are studied and compared. The methane adsorption rates and capacities were greatly enhanced in three biomaterials compared with that in the static water, while only corncob pith maintained relatively high gas adsorption capacity (72 v/v) and adsorption rate (~0.0300 MPa/min) in repeatable gas adsorption-desorption processes. Further investigations on the gas adsorption behavior in the corncob pith revealed that the porous structure of corncob pith generates larger specific surface areas, providing more nucleation sites for hydrate nucleation. In addition, the hydrophobic and hydrophilic performance of corncob pith components also affect the hydrate formation. The porous structure of corncob pith reduces its water activity, which decreases the stability of methane hydrate (~0.6 MPa higher at 273.15 K for equilibrium pressure than bulk phase). These results demonstrate the great gas adsorption performance and mild storage-transportation conditions of low-cost agricultural wastes and provide significant information in promoting their application in gas storage and transportation.

Funder

the Strategic Priority Research Program and Key Research Program of Frontier Sciences of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3