Phosphorus Fractions and Release Factors in Surface Sediments of a Tailwater River in Xinmi City, a Case Study

Author:

Huang ShanhengORCID,Xu HongbinORCID,Shang Dan,Liu Junzhao,Tang Qiuju,Liu Ruxue

Abstract

The Shuangji River in Xinmi City is a tailwater-type river. Its main water sources are the effluent from the domestic sewage plant, the effluent from the paper industry sewage plant and the coal well. The construction of wastewater treatment facilities in Xinmi city has significantly reduced the amount of total phosphorus (TP) discharged into Shuangji River. However, phosphorus control in rivers where the overlying waters are predominantly tailwaters is still a challenge, especially as the sediment–water interface’s phosphorus exchange mechanism needs to be investigated in detail. In this study, the content and proportion of each phosphorus fraction in the sediment of a tailwater-type river, the Shuangji River, were determined. It was found that the organic phosphorus (OP) and iron-bound phosphorus (Fe-P) content and proportion were high, and the risk of release was relatively high in the section of the river where the overlying water was the tailwater of a sewage plant. Temperature, pH, dissolved oxygen, and hydraulic disturbance were also found to control phosphorus forms’ transformation and release in the sediment. Elevated temperatures mainly stimulated the release of OP and Fe-P from the sediments. The dissolution of calcium-bound phosphorus (Ca-P) is the main pathway for phosphorus release under acidic conditions, whereas, under alkaline conditions, phosphorus release is mainly controlled by ion exchange between OH− and Fe-P and metal oxide-bound phosphorus (Al-P). Aerobic versus anaerobic conditions cause changes in Fe-P content in the sediment mainly by changing Fe ions’ chemical valence. Hydrodynamic disturbance accelerates labile-P release, but once the hydrodynamic disturbance stops, the overlying water dissolved total phosphorus (DTP) concentration rapidly decreases to a similar concentration as before.

Funder

Major Science and Technology Program for Water Pollution Control and Treatment

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3