A Novel Privacy Paradigm for Improving Serial Data Privacy

Author:

Shaukat Ayesha,Anjum AdeelORCID,Malik Saif U. R.,Shah Munam AliORCID,Maple CarstenORCID

Abstract

Protecting the privacy of individuals is of utmost concern in today’s society, as inscribed and governed by the prevailing privacy laws, such as GDPR. In serial data, bits of data are continuously released, but their combined effect may result in a privacy breach in the whole serial publication. Protecting serial data is crucial for preserving them from adversaries. Previous approaches provide privacy for relational data and serial data, but many loopholes exist when dealing with multiple sensitive values. We address these problems by introducing a novel privacy approach that limits the risk of privacy disclosure in republication and gives better privacy with much lower perturbation rates. Existing techniques provide a strong privacy guarantee against attacks on data privacy; however, in serial publication, the chances of attack still exist due to the continuous addition and deletion of data. In serial data, proper countermeasures for tackling attacks such as correlation attacks have not been taken, due to which serial publication is still at risk. Moreover, protecting privacy is a significant task due to the critical absence of sensitive values while dealing with multiple sensitive values. Due to this critical absence, signatures change in every release, which is a reason for attacks. In this paper, we introduce a novel approach in order to counter the composition attack and the transitive composition attack and we prove that the proposed approach is better than the existing state-of-the-art techniques. Our paper establishes the result with a systematic examination of the republication dilemma. Finally, we evaluate our work using benchmark datasets, and the results show the efficacy of the proposed technique.

Funder

Will be added in final files

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference46 articles.

1. National Prison Entrants’ Bloodborne Virus Survey Report, 2004;Butler,2005

2. Managing dimensionality in data privacy anonymization

3. A survey on data preprocessing for data stream mining: Current status and future directions

4. The Anonymisation Decision-Making Frameworkhttps://fpf.org/wp-content/uploads/2016/11/Mackey-Elliot-and-OHara-Anonymisation-Decision-making-Framework-v1-Oct-2016.pdf

5. A hybrid approach to prevent composition attacks for independent data releases

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Adversarial Approach: Comparing Windows and Linux Security Hardness Using Mitre ATT&CK Framework for Offensive Security;2022 IEEE 19th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET);2022-12-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3